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The mathematical content of this article is identical with what appears in
Hausdorff’s Grundzüge [H 1914a] on pages 401–402, 469–472. We note that
the present article is dated 27. 02. 1914 and that the “Vorwort” of the Grundzüge

carries the date 15. 03. 1914. The problem discussed was originally formulated
by Lebesgue in his 1902 thesis ([L 1902], p. 208); it consists of the following:
To assign a non-negative real number f(A) to each bounded subset A of R

n in
such a way that:

(i) f(E) = 1 if E is the closed unit cube in R
n;

(ii) f(A) = f(B) if A,B are congruent;

(iii) f(A ∪B) = f(A) + f(B) if A,B are disjoint;

(iv) f(A1 ∪A2 ∪ · · · ) = f(A1) + f(A2) + · · · if A1, A2, . . . is any denumerable
sequence of mutually disjoint sets whose union is bounded.

The congruence condition in (ii) is to be interpreted as follows: A,B are con-
gruent if there exists ρ ∈ Gn, the Euclidean group of (Euclidean) distance
preserving transformations in R

n, such that ρ(A) = B. Let us call the problem
of the existence of such an f , the σ-additive measure problem in R

n and the
problem of the existence of an f verifying only the conditions (i), (ii), (iii), the
finitely additive measure problem in R

n. The two major results of Hausdorff

in this paper can then be formulated as follows: (a) the σ-additive measure

problem in R
n has no solution for any n ≥ 1; (b) the finitely additive measure

problem in R
n has no solution if n ≥ 3. Both of these results are proven by

using the axiom of choice; contrary to many of his contemporaries Hausdorff

always remained an unrepentant user of this axiom. At the end of the paper,
Hausdorff mentions explicitly that the finitely additive measure problem in
R

1 and R
2 remains open since his analysis does not apply to the groups G1, G2,

the Euclidean groups in R
1,R2 respectively. Let us state right away that Ba-

nach showed, in 1923, that the finitely additive measure problem in R
1,R2,

does have infinitely many solutions ([B 1923]).
Let us recall that Lebesgue had left the σ-additive measure problem in

R
n unresolved; his construction had proved the existence of f(A) for the so-

called Lebesgue-measurable bounded subsets of R
n and he had left the exi-



stence of non-measurable subsets as an open question. As mentioned by Haus-

dorff, this was first settled by Vitali (in 1905) by the construction of a
non-measurable set in R

1. A point of historical interest is the second footnote
on p. 428; after having stated in the text that the first such example is due
to Vitali, Hausdorff indicates in the footnote, among other references, that
the example in the text is due to himself. It is clear that Hausdorff had
discovered it independently of Vitali since the latter’s 1905 paper on the sub-
ject [V 1905] appears to have been seen by very few contemporaries; Vitali’s
short paper (the actual text, in Italian, is only 2 1/2 pages long) seems to have
been printed privately and was not to be found in any regular mathematical
journal. Be that as it may, Hausdorff’s method is essentially the same as
that of Vitali; Hausdorff uses the subgroup Gδ = {nδ, n ∈ Z}, δ being a
fixed irrational number, whereas Vitali works with the subgroup of rational
numbers. This method of using a denumerable dense subgroup of the additive
group R (in Hausdorff’s case, the dense subgroup is G = Gδ +Z) is probably
the most widely disseminated one in the existing text-books, old and new, for
the construction of non-measurable sets in R. Hausdorff concludes that the
σ-additive measure problem in R

1 (and hence in R
n, n ≥ 1) has no solution.

The proof of the impossibility of the finitely additive measure problem in
R

n, n ≥ 3 (statement (b) above) is what has made this paper a mathematical
landmark. As in the case of (a), Hausdorff reduces the problem rather sum-
marily (but correctly, see below) to one on the unit sphere; for K = K2 = S2 ⊂
R

3, he then produces the so-called Hausdorff paradoxical decomposition:

K = A ∪B ∪ C ∪Q (1)

where A,B,C,Q are four disjoint subsets of K, Q being denumerable and

A ∼ B ∼ C ∼ B ∪ C (2)

the congruence∼ here being under the group of rotations SO3. A decomposition
(1) excludes the possibility of having an SO3- invariant finitely additive positive
set function f defined for all subsets of K with f(K) > 0; indeed for such an
f, f(Q) must be 0 (an easy argument given on page 432) and

f(A) = f(B) = f(C) = f(B ∪ C) = f(B) + f(C)

whence all of these numbers are 0 which is impossible since

0 < f(K) = f(A) + f(B) + f(C).

The decomposition (1) is obtained by the consideration of a denumerable
subgroup G = G(ϕ, ψ) of SO3 generated by two rotations ϕ, ψ such that

ϕ2 = 1, ψ3 = 1,

1 being the identity map, and such that ϕ, ψ satisfy no other non-trivial rela-

tions. Such a group G can then be written as a disjoint union of three subsets,

G = Ã ∪ B̃ ∪ C̃ (3)



in such a way that

ϕ(Ã) = B̃ ∪ C̃, ψ(Ã) = B̃, ψ(B̃) = C̃, ψ(C̃) = Ã;

this is done fairly simply on pages 432–433 (except that we write ϕρ for Haus-

dorff’s ρϕ so that for us ϕρ(x) = ϕ(ρ(x)) etc.; also ϕ(Ã) = {ϕρ : ρ ∈ Ã} etc.).
From (3) the decomposition (1) is easy to obtain; take Q to be the denumerable
set formed of all the fixed points in K of all the rotations ρ 6= 1 in G (two such
fixed points for each ρ) and write P = K \Q; let M be a subset of P obtained
by choosing one point from each orbit

{ρ(x) : ρ ∈ G}, x ∈ P ⊂ K;

now write A = ÃM, B = B̃M, C = C̃M where, for any subset S ⊂ G,

SM = {ρ(x) : ρ ∈ S, x ∈M}.

It is then easy to see that A,B,C,Q provide a decomposition (1) with

ϕ(A) = B ∪ C, ψ(A) = B, ψ(B) = C

so that (2) is verified.
A very detailed and readable account of Hausdorff’s proof for the existence

of his paradoxical decomposition (1) is given by Sierpiński ([S 1954]) where a
small gap in Hausdorff’s construction of the group G(ϕ, ψ) is filled; [S 1954]
contains an elementary exposition of other paradoxical decompositions as well,
one of which we shall mention in the following.

The proof of the existence of G = G(ϕ, ψ) is an important element of Haus-

dorff’s paper; later authors have given simpler constructions (see [W 1993]
p. 20 for references). Indeed, it is possible to give explicitly two rotations ϕ1, ϕ2

which generate a free subgroup F2 with two generators in SO3 ([W 1993], p. 15);
using such an F2 in place of G = G(ϕ, ψ) above, the decomposition (3) is even
easier to obtain and then the whole proof can be worked out exactly as before.
However, it should be pointed out that a group like G(ϕ, ψ) (a free product of
Z2 and Z3) must necessarily contain a free subgroup with two generators, a fact
noticed by several authors (in particular by von Neumann in his important
1929 paper [vN 1929], p. 606). Hausdorff’s own proof for the existence of
G(ϕ, ψ) consists of choosing ψ as a 2π/3-rotation around the z-axis and ϕ as
a π-rotation around an axis (through the origin) in the xz-plane making an
angle of θ/2 with the z-axis where θ is chosen suitably (x, y, z here denoting
the traditional perpendicular axes in R

3). It is enough to have θ such that cos θ
is transcendental, although Hausdorff does not say this; he shows directly
that by avoiding an at most denumerable set of angles, a suitable θ can be
determined. Hausdorff seems to consider it much too obvious and hence not
worth mentioning explicitly that the non-existence of an SO3-invariant finitely
additive non-trivial positive measure defined for all subsets of K = S2 implies



the impossibility of the finitely additive measure problem in R
3. This implica-

tion can be seen as follows: if there were a finitely additive measure f verifying
(i), (ii), (iii) in R

3 then, for A ⊂ K,

g(A) = f({tx : x ∈ A, 0 < t ≤ 1})

would define a non-trivial finitely additive positive SO3-invariant measure g
defined for all subsets of K which would be a contradiction. Hausdorff does
point out the easy argument which shows that if the finitely additive measure
problem is impossible in R

3 then it is also impossible in all R
n, n ≥ 3.

The direct and indirect effects of this short paper of Hausdorff have been
remarkable. As mentioned above, it prodded Banach to solve (in 1923) the
finitely additive measure problem in R

1 and in R
2; here Banach used methods

which were to be fruitfully generalized by von Neumann and others later (in
the guise of amenable groups). On the other hand, soon afterwards in 1924,
Banach and Tarski [BT 1924] gave a very striking theorem in R

n, n ≥ 3,
which establishes the existence of even more surprising decompositions; their
theorem gives that if A,B are any two bounded subsets of R

n, n ≥ 3, with non-

empty interiors, then, they are equivalent under finite decomposition using the

group Gn i. e. for some integer m ≥ 1,

A = A1 ∪ · · · ∪Am, B = B1 ∪ · · · ∪Bm, Ai ∼ Bi, i = 1, . . . ,m (4)

where A1, . . . , Am is a disjoint partition of A, B1, . . . , Bm is a disjoint partition
of B and the congruence Ai ∼ Bi is with respect to the Euclidean group Gn;
they also prove that such a theorem is false for n = 1, 2. Banach and Tarski

give corresponding results for Sn, n ≥ 2, and S1 using the congruence group
On (or SOn). Decompositions like (4) form what is generally referred to as the
Banach-Tarski paradox. Banach and Tarski based their proof on Haus-

dorff’s paradoxical decomposition (1) of S2 and used a general set-theoretical
theorem due to Banach [B 1924], sometimes called the Banach-Schröder-

Bernstein theorem since it generalizes the usual Schröder-Bernstein theo-
rem of set theory.

As regards the finitely additive measure problem the first general analysis
valid in abstract spaces was provided by von Neumann in 1929 [vN 1929]; he
considered an abstract set X on which acted a group G and studied the pro-
blem of the existence of a finitely additive measure µ(A), with 0 ≤ µ(A) ≤ ∞,
defined for every subset A of X which has the property of being G-invariant
(µ(A) = µ(ϕ(A)), ϕ ∈ G,A ⊂ X) and which is such that for some fixed non-
empty set E ⊂ X, one has µ(E) = 1. Let us call (with von Neumann) such
a µ, if it exists, a [X,E,G]-measure; one of the merits of von Neumann’s
analysis is to reduce the problem of the existence of a [X,E,G]-measure to a
purely group-theoretical problem of the existence of a [G,G,G]-measure where
G acts on itself say by left multiplication. A group G for which a [G,G,G]-
measure exists is called (in modern terminology) an amenable (more exactly,
left amenable) group; von Neumann himself called such groups “messbar”.



von Neumann then proves that if G is amenable and a certain general condi-
tion is satisfied by X and E (a condition easily verified if, X = R

n, E = closed
unit cube in R

n, G = Gn and other similar classical examples) then there is
a [X,E,G]-measure. In this proof, von Neumann uses Banach’s method as
in [B 1923]. If on the other hand G has a free subgroup with two generators
F2 (and then G is not amenable) then by following the Hausdorff-Banach-

Tarski procedure, von Neumann shows (under a very general condition on
E) that no [X,E,G]-measure can exist. Von Neumann then deduces a number
of classical existence and non-existence results from his general theory by pro-
ving first that the Euclidean groups G1, G2 are amenable whereas Gn, n ≥ 3,
contains a free subgroup F2. Von Neumann’s analysis was soon completed
by a very elegant general theorem of Tarski (first announced in 1929) which
can be stated as follows: a [X,E,G]-measure exists if and only if E is not

G-paradoxical [T 1929]. We say that E ⊂ X is G-paradoxical if for some inte-
gers m,n there are mutually disjoint subsets A1, . . . , Am, B1, . . . , Bn in E and
ϕ1, . . . , ϕm, ψ1, . . . , ψn in G such that

E =

m
⋃

i=1

ϕi(Ai) =

n
⋃

j=1

ψj(Bj). (5)

It is easy to see that if E is G-paradoxical then a [X,E,G]-measure µ cannot
exist; indeed if (5) holds, such a µ must satisfy

µ(E) ≤

m
∑

i=1

µ(ϕi(Ai)) =

m
∑

i=1

µ(Ai) = µ

(

m
⋃

i=1

Ai

)

µ(E) ≤

n
∑

j=1

µ(ψj(Bj)) =

n
∑

j=1

µ(Bj) = µ





n
⋃

j=1

Bj



 ;

but by the disjointness of all the Ai’s and the Bj ’s in E we have

µ(E) ≥ µ

(

m
⋃

i=1

Ai

)

+ µ





n
⋃

j=1

Bj



 ≥ 2µ(E)

which is impossible since µ(E) must be 1. The proof of the converse (i. e. if E is
not G-paradoxical then a [X,E,G]-measure µ exists) is very much more subtle;
Tarski gave a proof of a more general result in 1938 in [T 1938] by a careful
refinement of his own work with Banach which in turn was so crucially influ-
enced by Hausdorff’s. The study of the finitely additive measure problem in
R

n can be completely accomplished via Tarski’s general theorem. A readable
modern exposition of Tarski’s theorem and numerous related problems (many
unsolved) can be found in [W 1993].

Thus we see that this short paper of Hausdorff has given rise to the subject
of amenable groups and to that of paradoxical decompositions. Each subject



has developed a huge literature; we indicate briefly some recent publications
which could serve as further guide to the current developments. A recommen-
ded monograph is that of Wagon [W 1993] which contains a very readable
exposition of both subjects and a substantial bibliography (upto 1993).

As von Neumann had already noted, the amenability of a group G is equi-
valent to the existence of a left G-invariant positive linear functional M on the
Banach space B(G) of all real-valued bounded functions on G with M(1) = 1.
If G is a general topological group (the preceding case being that of G with
the discrete topology) then one could ask for the existence of a left (or right
or two-sided) G-invariant positive linear functional M on other G-invariant
topological vector spaces of functions (or other objects like measures or distri-
butions) defined onG. This theory has far-reaching implications (specially forG
locally compact or G a Lie group) on the representation theory of G. It is then
an important matter to settle the relationship between the different types of
amenability which thus arise. A relatively recent account of some of this is given
in the monograph of Paterson [P 1988] which contains references to other re-
levant work on amenability. One of the most important by-products emanating
from Hausdorff’s paradoxical decomposition, via von Neumann’s analysis,
is the notion of amenability which seems to play an ever-increasing role in diver-
se areas of mathematics. To mention one important area of application, let us
point out the theory of operator algebras which forms the basis of A. Connes’

ambitious programme of non-commutative geometry; see, for example, his book
[Co 1994], section V. 7.

Much work has been devoted to determining how “regular” the sets in the
Hausdorff decomposition (1) or the Banach-Tarski decomposition (4) can
be. A very important recent progress is contained in the paper of Dougherty

and Forman [DF 1994]; they prove (as a special case of a much more general
theorem) that the sets in the decompositions (1) and (4) can be chosen to have
the property of Baire (provided, in (4), A,B have this property). This solves a
problem concerning the existence of Marczewski measures (explained in [W
1993]). Laczkovich [La 1992] gives a report on several other interesting and
novel aspects of paradoxical decompositions.

A recent article which surveys (and gives complete proofs) of several themes
concerning amenability and paradoxical decompositions is [CGH 1999].

Hausdorff himself never published anything more on the subject; however,
from his Nachlass we know that he followed with interest the work of Banach

and Tarski. In [NL Hausdorff: Fasz. 1028] (dated 19. 6. 1924, 25. 6. 1924)
Hausdorff gives a short proof of the Banach-Tarski paradox in R

3 by
using his own paradoxical decomposition of S2, a simple form of the above-
mentioned Banach-Schröder-Bernstein theorem (Hausdorff calls this
an analogue of the Bernstein equivalence theorem) and the fact (which he
proves) that S2 ≡ S2 \ D where D is any denumerable set and ≡ stands for
equivalence under finite decomposition (using the group SO3). A similar proof
was published later by Sierpiński and it appears in [S 1954], p. 93. A novel
feature of this manuscript is that Hausdorff obtains his paradoxical decom-



position by using a subgroupG(α, β, γ) of SO3 where α2 = β2 = γ2 = 1, α, β, γ
being otherwise independent; thus G(α, β, γ) is isomorphic to the free product
Z2 ∗Z2 ∗Z2, each α, β, γ being a suitable π-rotation. The paradoxical decompo-
sition is obtained by exactly the same method as the one outlined above except
that now one has 5 disjoint sets, one of them denumerable as before. One reason
why Hausdorff prefers this method of arriving at his decomposition seems
to lie in the simple and elegant algebra of 3× 3 matrices underlying the choice
of the π-rotations α, β, γ. Indeed, he returns to this matrix algebra in greater
detail in [NL Hausdorff: Fasz. 386], dated 19. 2. 30. I must admit that the
matrix algebra concerned is very pleasant to work out. However, given that
the only point relevant to the existence of his paradoxical decomposition is the
existence of suitable free products in SO3 for which there are several shorter
proofs available now (see references given above), I refrain from reproducing
any parts of these manuscripts.
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