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Since the explosion of the theory of fractals in the 1970’s, this [H 1919a] is
probably the most often cited paper of Hausdorff, at least in the popular
and semi-popular scientific literature; it is therefore not surprising that its
contents are often misquoted and misinterpreted. Hence, we summarize first the
mathematical novelties contained in this paper; we shall do so in the language
of general metric spaces (X, ρ), although Hausdorff restricted himself to
X = R

q equipped with its usual q-dimensional Euclidean distance, q = 1, 2, . . .
Let U be any family of bounded subsets of the metric space (X, ρ) such that

for any ε > 0, every subset A of X can be covered by a finite or denumerable
family of sets U in U with d(U) < ε, d(U) being the diameter of the set U ;
this last condition on the family U can be omitted but its absence may lead to
trivialities. Suppose that to each U in U is assigned a non-negative real number
ℓ(U); define, for A ⊂ X, ε > 0,

Lε(A) = inf







∑

n≥1

ℓ(Un) : A ⊂
⋃

n≥1

Un, Un ∈ U , d(Un) < ε







(1)

and

L(A) = lim
ε↓0

Lε(A). (2)

To avoid uninteresting difficulties it is best to assume that ∅ ∈ U and ℓ(∅) = 0,
although Hausdorff does not do so explicitly; thus Lε(∅) = 0 = L(∅); notice
that 0 ≤ Lε(A) ≤ ∞ and that, for obvious reasons, Lε(A) increases with
decreasing ε i. e. if 0 < ε1 < ε2 then

Lε1
(A) ≥ Lε2

(A).

Hausdorff’s first observation is that A 7→ L(A) defines a metric outer
measure on the family of all subsets A of the metric space (X, ρ); explicitly,
this means that L verifies the conditions I–IV given below:

(I) 0 ≤ L(A) ≤ ∞ (with L(∅) = 0)

(II) If B ⊂ A then L(B) ≤ L(A).



(III) If A = A1 ∪ A2 ∪ · · · then L(A) ≤
∑

n≥1

L(An).

(IV) If δ(A, B) > 0 (δ(A, B) being the distance between the non-empty sub-
sets A, B) then

L(A ∪ B) = L(A) + L(B).

Further if the sets in U are Borel sets then L satisfies the following as well:

(V) L(A) = inf{L(B) : B ⊃ A, B being L-measurable}

where B is called L-measurable if for any subset W of X ,

L(W ) = L(W ∩ B) + L(W \ B). (3)

Recall that the Borel sets of X are defined to be the sets belonging to the
smallest σ-algebra generated by the open sets of X . According to current ter-
minology, any set function L, defined for all subsets of a set X , satisfying I,
II and III, is called an outer measure in X ; if X is a metric space and the
outer measure L in X satisfies IV then L is called a metric outer measure
in X ; finally, any outer measure L in any set X which satisfies V is called a
regular outer measure in X . The condition (3) is called the Carathéodory

condition of measurability and was first introduced in [C 1914]. Although Ca-

rathéodory (like Hausdorff) supposed that X = R
q, it was obvious that

all his work involving only I, II, III was valid for any outer measure in any
set X and that all his considerations involving IV applied to any metric space
X ; for Carathéodory, the purpose of condition IV was to ensure that at
least all the Borel sets of the metric space X were measurable. As observed
by Hausdorff (p. 158), if L satisfies I–IV then a simple modification of L
provides other metric outer measures M, N which satisfy V as well. In [C 1914]
Carathéodory showed that if U is the class of all bounded subsets of X = R

1

and ℓ(U) = d(U), the diameter of U , then the corresponding set function L(A)
(called the linear measure of A) constructed via (1) and (2) verifies the condi-
tions I–V; as Hausdorff remarks on p. 159, Carathéodory’s proof applies
verbatim to the general situation envisaged by Hausdorff. In [C 1914] Ca-

rathéodory further points out that for the case of the linear measure the sets
in the family U can be restricted to bounded open convex subsets (or boun-
ded closed convex subsets) of R

q; Hausdorff indicates on p. 160 that if ℓ(U)
verifies some simple conditions then in his more general situation also the sets
U can be restricted to open or closed subsets without changing the value of
L(A). The point is that if the sets of the family U are Borel sets then the
construction given in (1) and (2) automatically yields L which satisfies V as
well.

The greater part of Carathéodory’s fundamental paper [C 1914] is devo-
ted to the study of abstract metric outer measures in R

q; the only concrete
example Carathéodory discusses in detail is the case of the linear measure
mentioned above and it is shown that this measure gives an appropriate ge-
neralisation of the elementary notion of the length of curves. Carathéodory



briefly mentions the possibility of p-dimensional measures in R
q (p being an

integer with 1 ≤ p ≤ q) by replacing ℓ(U) by a “p-dimensional volume” of U
as indicated in example (G) of Hausdorff (p. 162), the idea being that of
generalising ordinary p-dimensional volumes of general subsets of R

q. At this
point, Hausdorff, by restricting himself to ℓ(U) of the form λ(d(U)) where
λ is any non-negative continuous strictly increasing function of a real varia-
ble x ∈ [0,∞[ λ : [0,∞[→ [0,∞[) with λ(0) = 0 (such a λ will be called a
Hausdorff function) constructs a family of regular metric outer measures Lλ

(following the formulae (1) and (2)) using U as the family of balls (say open
balls to fix ideas). Hausdorff then shows that if λ(x) = xp and p = 1 or 2 then
the corresponding Lλ-measure reduces to the Carathéodory linear measure
or the usual 2-dimensional surface measure (for sets A in R

3 which are smooth
surface elements); further, if p = q then, except for a constant factor, Lλ is the
usual Lebesgue outer measure in R

q. Indeed for any p = 1, 2, . . . Hausdorff’s
Lλ-measure with λ(x) = xp leads to Carathéodory’s p-dimensional measure
in R

q, except for constant factors; the proofs of these facts are only briefly out-
lined. These facts are used essentially to justify the study of his Lλ-measures;
we shall call Lλ the Hausdorff measure associated with the Hausdorff func-
tion λ; if λ(x) = xp, p > 0, then we shall write L(p) for the corresponding
Hausdorff measure Lλ.

Now Hausdorff introduces his notion of dimension; given a Hausdorff

function λ, a set A ⊂ R
q is said to be of dimension [λ] if

0 < Lλ(A) < ∞. (4)

As Hausdorff points out immediately, the condition (4) depends only on the
behaviour of λ in an arbitrarily small neighbourhood of x = 0; if λ, µ are two
Hausdorff functions with

0 < a ≤
µ(x)

λ(x)
≤ b < ∞

for x in some interval ]0, ε[ then a set A is of dimension [λ] if and only if it is
of dimension [µ].

Hausdorff now considers the following basic problem : given a Hausdorff
function λ does there exist a set A in R

q of dimension [λ]?
Hausdorff does not solve this problem in all generality. Let us state first

his most important result in this direction: if λ : [0,∞[→ [0,∞[ is a strictly
increasing, strictly concave function with λ(0) = 0, limx→∞ λ(x) = ∞ then
there exists a bounded perfect non-dense set A ⊂ R of dimension [λ].

Before describing Hausdorff’s construction of A, let us note that what
Hausdorff calls konvex (nach oben) is what we call (following standard mo-
dern terminology) concave and what Hausdorff calls konkav is what we call
convex; if λ is twice differentiable then λ is concave (convex) in modern termi-
nology if λ′′ ≤ 0 (λ′′ ≥ 0). Note further that a concave real function defined in
]0,∞[ is automatically continuous; the determinant condition (γ) on p. 167 is



known to be equivalent to the strict concavity of λ. Further, a strictly concave
function λ : [0,∞[→ [0,∞[ is known to be strictly subadditive as Hausdorff

proves in (ι), p. 168, and as can be easily seen from the fact that such a λ with
λ(0) = 0 is of the form

λ(x) =

∫ x

0

f(t)dt, x ≥ 0

where f is strictly decreasing and integrable on [0, x], x > 0. If λ is also strictly
increasing then f(t) > 0 if t > 0; since f is strictly decreasing, f(0+) =
limt↓0 f(t) is in ]0,∞]; the case where f(0+) < ∞ gives λ such that

0 < lim
x→0

λ(x)

x
= f(0+) < ∞

so that, in this case, by a remark made above, a set A ⊂ R is of dimension
[λ] if and only if its Lebesgue outer measure is finite and positive. This case
is obviously of little interest for the problem at hand; the interesting case is
where f(0+) = ∞ so that

lim
x→0

λ(x)

x
= ∞. (5)

The relevance of these remarks will become clear later.

The construction given by Hausdorff of the set A ⊂ R of dimension [λ]
follows the classical method for the construction of the Cantor set. One fixes
a sequence of strictly positive numbers ξ0, ξ1, ξ2, . . . with

ξ0 > 2ξ1, ξ1 > 2ξ2, . . . ; 2nλ(ξn) = 1, n ≥ 0 (6)

which is easily shown to be possible because of the conditions imposed on λ.
From the interval [0, ξ0] a central open interval of length ξ0 − 2ξ1 is removed
leaving behind two closed intervals, each of length ξ1; the process is continued
with each of the two remaining intervals, leaving behind four closed intervals,
each of length ξ2; at the nth stage one would have 2n closed intervals left, each
of length ξn; if the union of these nth stage intervals is called An then A is
defined as

A =

∞
⋂

n=1

An.

It is then obvious that A is a bounded perfect non-dense set with Lλ(A) ≤ 1;
the difficult part of Hausdorff’s work is to show that Lλ(A) > 0; indeed, he
shows that Lλ(A) = 1.

By taking λ(x) = xp, 0 < p < 1, Hausdorff obtains A such that L(p)(A) =
1; if p = log 2/ log 3, then the numbers ξn in (6) are easily seen to be

ξn = ξn, ξ = 2−1/p =
1

3



so that the set A constructed above in this case becomes the classical Cantor

ternary set in [0, 1].
As Hausdorff points out, for his construction it suffices to have λ with the

requisite properties only in some interval [0, x0] with x0 > 0; this allows him
to affirm that for

λ(x) =

(

log
1

x

)−p

his construction will give a set A of dimension [λ]. It is further implied that
this construction will provide sets of dimension [λ] for all the functions λ of his
logarithmic scale

λ(x) = xp0

(

ℓ

(

1

x

))−p1
(

ℓ2

(

1

x

))−p2

. . .

(

ℓk

(

1

x

))−pk

where ℓ = log, ℓ2 = log log etc. and either p0 = 0 and the first non-vanishing
pi > 0 or 0 < p0 < 1 or p0 = 1 and the first non-vanishing pi < 0. Note that in
all these cases λ satisfies (5) and that λ′(x) → ∞ as x → 0+ and λ′′(x) < 0 for
all sufficiently small x > 0. However, the question of exactly which functions
λ will permit sets A ⊂ R of dimension [λ] is left open. This problem is settled
completely by Dvoretzky in 1946; in [D 1948] it is proved that the necessary
and sufficient condition that there exist a set A ⊂ R of dimension [λ] is that

lim inf
x→0+

λ(x)

x
> 0. (7)

As Dvoretsky points out, if the lim inf in (7) is zero then Lλ(S) = 0 for
any bounded set S in R and if the lim inf in (7) is a finite positive number α,
then for any bounded interval I of length c, Lλ(I) = αc; thus the significant
part of the statement implied by (7) is to establish that if the lim inf in (7)
is ∞ (i. e. λ satisfies (5)) then there exists a bounded set A ⊂ R with 0 <
Lλ(A) < ∞; Dvoretzky’s construction is similar to (but more elaborate than)
Hausdorff’s and yields a bounded perfect non-dense set A. Dvoretzky also
remarks that for the existence of A ⊂ R

q of dimension [λ] it is necessary and
sufficient that

lim inf
x→0+

λ(x)

xq
> 0. (8)

It is further observed in [D 1948] that the continuity and even the monotonici-
ty of λ can be dispensed with; actuallly, Hausdorff in his paper had already
mentioned that the continuity and monotonicity of λ were just convenient hy-
potheses, implying that it was the rate of convergence to zero of λ(x) as x → 0+
which was essential for dimension [λ]. In [R 1998] p. 68, Rogers gives a defi-
nitive answer to the question of the existence of a set A of dimension [λ]; for
any Hausdorff function λ there is a compact metric space (X, ρ) such that X is
of dimension [λ]. In Roger’s proof, X is realized as a compact subset of [0, 1]
in R but it is endowed with a suitable new metric ρ; an interesting feature of



this construction is that the topology given by ρ in X is identical with that
induced by the usual topology of R. This illustrates in a vivid manner the great
dependence of the notion of dimension [λ] on the choice of the metric ρ, a point
which might have interested Hausdorff. Indeed if

λ(x) = exp(−1/x), x > 0, (λ(0) = 0) (9)

a function explicitly mentioned by Hausdorff, p. 166,

lim
x→0+

λ(x)

xq
= 0

for any q ∈ R so that for any bounded set A in any R
q (endowed with its Eucli-

dean metric) we should have Lλ(A) = 0. Hausdorff interprets this as saying
that dim[λ] “corresponds to an infinitely big dimension” (“entspricht eine un-
endlich grosse Dimension”). We should add that in [R 1998], the Hausdorff

function λ are supposed to be monotonic increasing and only continuous on the
right with λ(0) = 0; an inspection of the proof in [R 1998] seems to imply that
no condition on λ beyond λ(x) → 0 as x → 0+ is needed to establish Roger’s
theorem.

As regards the construction of sets A in R
2 (endowed with the usual Euclidi-

an metric) of dimension [λ], λ being a prescribed Hausdorff function, Haus-

dorff states (p. 177) that it is “nicht ohne Schwierigkeit”. However, he shows
(rather easily) that if A is a set of dimension [λ] and B is a set of dimension
[µ], A, B being the special type of sets in R constructed by him previously then
A × B will be of dimension [λµ]. Here Hausdorff comes across a problem
which is difficult and which would tax the ingenuity of many mathematicians
later: if A is of dimension [λ] and B is of dimension [µ] what can be said of the
dimension of A × B? More information on this subtle question is indicated in
[R 1998], p. 131.

Let us note that Hausdorff’s notion of dimension is one of prescribing a
suitable Hausdorff function λ to the set concerned; what is commonly called
Hausdorff (fractional) dimension these days is a less refined concept. If A is a
subset of a metric space (X, ρ), the Hausdorff dimension of A is a quantity
α, 0 ≤ α ≤ ∞, defined as follows:

α = sup{p > 0 : L(p)(A) = ∞} = inf{p > 0 : L(p)(A) = 0}. (10)

In other words, the definition (10) is based only on the Hausdorff measures
defined by the special Hausdorff functions λ(x) = xp, p > 0; that (10) gives
a well-defined number α is seen from the easily proved fact that if L(p)(A) = ∞
then L(p′)(A) = ∞ for all p′ with 0 < p′ < p and if L(p)(A) = 0 then L(p′)(A) =
0 for all p′ > p. Further, if for some p, 0 < p < ∞, a set A is such that

0 < L(p)(A) < ∞

then L(p′)(A) = 0 for p′ > p and L(p′

)(A) = ∞ if 0 < p′ < p so that the
Hausdorff dimension of A (in the sense of (10)) is equal to p; however, a set



A may be of Hausdorff dimension p, 0 < p < ∞, and yet L(p)(A) may be or
0 or ∞. Thus saying that the classical Cantor ternary set C is of Hausdorff

dimension log 2/ log 3 is less precise than the fact proved by Hausdorff (see
above) that L(p)(C) is finite and > 0 (indeed equal to 1) if p = log 2/ log 3.
Nevertheless, for many problems, a knowledge of α (as defined by (10)) is a
sufficiently refined piece of information. On the other hand it must be added
that there are sets A for which there is no Hausdorff function λ such that
A is of dimension [λ]; however, for A arising in many concrete problems, a
suitable Hausdorff function λ such that A is of dimension [λ] exists and then
one has indeed the most refined metrical information about the size of A that
one would wish to possess.

The present paper of Hausdorff seems to have arisen from a close scrutiny
of Carathéodory’s paper [C 1914]; he did not seem to have any immediate
application elsewhere in view. However, it must be added that Hausdorff

was always interested in the topological notion of dimension (cf. his reference
to Fréchet’s work on p. 157), a subject that had begun to come into its
own through the important papers of Brouwer (1913) and Lebesgue (1911)
(cf. [HW 1941], chapter 1). We shall briefly report at the end on the huge
amount of unpublished material that Hausdorff has left behind on topological
dimension theory. Let us only recall at this point that Hausdorff was also
interested in working out rigorously the notions of length, area, volume etc. as
used in all areas of mathematics; this is clearly seen in the introduction to
the tenth chapter of his Grundzüge ([H 1914a], Inhalte von Punktmengen). His
presentation of the relevant measure theory there was based on Lebesgue’s
1902 thesis and Lebesgue’s 1904 book (Leçons sur l’intégration) and was
somewhat laborious; Carathéodory’s paper [C 1914] must have seemed to
him then (as it still seems to many of us today) an enormous clarification of
the theory.

Although Hausdorff never published anything more on his own dimension
theory and his publications after 1919 turned to matters in entirely different
fields of analysis, the after-effects of this 1919 paper were enormous. It would
be impossible, if not foolish, to try to give explicit individual references to
all the papers which stemmed directly or indirectly from the present paper
of Hausdorff; we shall therefore limit ourselves to those references which
themselves contain substantial bibliographies related to Hausdorff measures.

An early explicit reference to Hausdorff’s present paper is in a paper of
Bouligand on the Dirichlet problem in 1925; for this see [CF 1993] which
contains English translations of a number of early papers related to fractals,
including a translation of the present paper of Hausdorff. Bouligand pu-
blished several other papers in 1928 and 1929 on his notion of dimension in
relation to his work on potential theory and he seemed to have come to the
conclusion that Hausdorff’s dimension was not related to his definitions. Ho-
wever, in 1935, Frostman in his famous thesis on potential theory [Fr 1935]
established a close relationship between the notion of capacity (of a closed set
in an Euclidean space) and the Hausdorff measure Lλ (of the closed set for



a suitable Hausdorff function λ, cf. [Fr 1935], p. 86); further, both of these
were closely related to the notion of transfinite diameter of sets (in R

2, due to
Fekete in 1923, in R

3 due to Pólya and Szegö in 1931; [Fr 1935], p. 44–46).
By introducing Hausdorff’s fractional dimension as indicated above in (10),
Frostman establishes the equality between the fractional dimension and the
capacitory dimension for every closed set in R

q ([Fr 1935], p. 90); this equality
has become a powerful analytical method for calculating the Hausdorff frac-
tional dimension of sets in R

q. Frostman’s paper shows a thorough study of
Hausdorff’s present paper.

A spate of profound papers on Hausdorff measures began to be written
by Besicovitch starting around 1927; a partial (and yet a long list) of these
papers is given in the very readable textbook of Rogers [R 1998] which we have
already cited above. Besicovitch and his numerous excellent collaborators
wrote (and continue to write; Besicovitch died in 1970) on almost all aspects
of Hausdorff measure theory, with much emphasis on geometric measure
theory and metric aspects of number theory; six of these papers are reproduced
in [CF 1993] and they may give some idea of the wide range of topics handled by
these authors. Incidentally, the definition of Hausdorff fractional dimension
(as in (10) above) seems to have appeared first in a 1929 paper of Besicovitch.

We shall not attempt to describe the numerous applications of Hausdorff

measures L(p) (specially with p an integer) in the detailed analysis of functions
and measures in R

n which constitute geometric measure theory. Any reasonably
general development of the change of variables formula in multiple integrals and
the Gauss-Green-Stokes formula in R

n inevitably leads to the measures L(p)

and the associated notions of rectifiability. A definitive account of this theory
is given in Federer’s monograph [F 1969]; a more recent account of some of
this theory is [M 1995]. Let us note that in Federer’s book, important use is
made of at least seven different types of Hausdorff measures formed by using
various geometrically important quantities ℓ(U) in the construction indicated
in (1) and (2).

As regards applications to number theory, let us cite the following 1934 result
of Besicovitch ([CF 1993], p. 147): let E be the set of real numbers x in ]0, 1[
such that

lim sup
n→∞

P (x, n)

n
≤ p

where 0 < p < 1
2 and P (x, n) is the sum of the first n digits in the dyadic

expansion of x; then the Hausdorff fractional dimension (in the sense of
(10)) of E is given by

α =
I(p)

log 2
, I(p) = −p log p − q log q, q = 1 − p. (11)

Besicovitch does not state the value of α in this form; however, the advantage
of the form (11) lies in the interpretation of I(p) as the Shannon information
associated with the two point probability space {0, 1}, p being the probability



given to 1, q = 1 − p to 0. Note that I(1/2) = log 2. Subsequent research
has established numerous formulae relating Hausdorff fractional dimensions
of sets with Shannon information associated with appropriate (often discrete)
probability spaces and this has led to applications in ergodic theory and coding;
an useful short bibliography is contained in Falconer’s foreword in [R 1998].
Note that by the Borel-Hausdorff law of normal numbers, the Lebesgue

measure of the set E (for any value of p < 1
2 ) is zero; the Hausdorff fractional

dimension measures the size of E as a function of p. This is a typical service
rendered by Hausdorff dimensions in general and they are used in this sense
in many refined investigations; for example, many curves that arise in various
studies of dynamical systems or stochastic processes have no tangents anywhere
and their Hausdorff dimension functions indicate the degree of their fractal
nature. A survey of many of these results and others are contained in the various
articles on the subject in [FH 1996].

The perfect Cantor type set A constructed by Hausdorff via the numbers
{ξn} defined by (6) has played an important part in harmonic analysis. In the
1940’s Salem used A (and its generalisations) to construct singular probability
measures µ supported by A whose Fourier-Stieltjes coefficients tend to
zero; in fact µ is nothing but Hausdorff’s measure Lλ. Since Lλ has a very
simple probabilistic interpretation, its Fourier-Stieltjes transformation can
be written down almost immediately; if ξ0 = 1, Lλ is the probability law of the
random variable

η =

∞
∑

k=1

εkrk, r1 = (1 − ξ1), rk = (1 − ξk)ξ1 . . . ξk−1 (k ≥ 2)

where εk’s form a sequence of independent, identically distributed random
variables taking the values 0 or 1 with probability 1/2. Thus the Fourier-

Stieltjes transform of Lλ is given by

∫ 1

0

exp(it x)dLλ(x) = exp(it/2)

∞
∏

k=1

cos(rkt/2)

(using the fact that
∑

k≥1

rk = 1).

The elegant book by Kahane and Salem [KS 1994] uses sets A and their
generalisations to answer a large number of questions of classical Fourier

analysis; it gives a good introduction to Hausdorff measures and the capacity
formula of Frostman; it also establishes Hausdorff’s dimension result about
A (p. 30); Kahane and Salem call the sets A “ensembles parfaits symétriques”
(p. 13).

Since Mandelbrot introduced the notion of fractal objects, more and mo-
re areas of physics and other natural sciences are using concepts related to
Hausdorff measures. A very complete bibliography can be found in Man-

delbrot’s book [Ma 1983].



To complete our rapid survey of the after-effects of Hausdorff’s paper, let
us mention its influence on topological dimension theory; to our knowledge,
it has not been great. Chapter VII of [HW 1941] is devoted to this topic. As
pointed out there, both the Cantor triadic set as well as the set of irratio-
nal numbers in [0, 1] have topological dimension zero; however, we have seen
that the Cantor set has Hausdorff fractional dimension log 2/ log 3 (which
is bigger than 0.63) and the Hausdorff fractional dimension of the irrational
numbers in [0, 1] (or in R) is obviously 1 since its 1-dimensional (Lebesgue)
measure is > 0. The basic theorem establishing a relationship between the
two notions of dimension was established in 1937 by the Polish analyst Szpil-

rajn (who published under the name of Edward Marczewski, after 1945).
We state one of its consequences as follows: let dim X denote the topological
dimension of the separable metric space (X, ρ) (defined inductively, dimX is
always an integer ≥ 0 or ∞ and is a topological invariant; it does not depend
on the choice of the particular metric ρ); let α(X, ρ′) be the Hausdorff frac-
tional dimension of (X, ρ′) where ρ′ is any metric on X such that (X, ρ′) is
homeomorphic to (X, ρ) as topological spaces; then

dimX = inf
ρ′

α(X, ρ′) (12)

where the infimum is taken over all possible metrics ρ′ in X verifying the
condition prescribed.

From Hausdorff’s unpublished papers we know that he remained inte-
rested in topological dimension theory all through his life. There are several
hundred pages of studies on the ongoing work on dimension theory of Hu-

rewicz, Menger, P. Alexandroff, Urysohn, Kuratowski and others.
NL Hausdorff: Kapsel 47: Fasz. 986 (written between 1930–1936) is a book
length study of approx. 200 pages incorporating many of the results of the ma-
thematicians mentioned. All of this shows his permanent interest in dimension
theory as a point-set topologist; but we have not found any further work on
his own measure theoretical dimension theory.
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